
KENDRIYA VIDYALAYA SANGATHAN MUMBAI REGION 

PREBOARD EXAMINATION (2023-24) 

CLASS XII 

SUBJECT: COMPUTER SCIENCE (083) 

Time allowed: 3 Hours      Maximum Marks: 70 
 

MARKING SCHEME 

 

Que 

s No 

Question Marks 

SECTION A 

1 True 1 

2 b. 11 digits 1 

3 b. ** 1 

4 (A)hAPPY#HOUR1122#33  1 

5 b.7,18 1 

6 a. PAN 1 

7 b. Error 1 

8 (d) ("f","o","obar") 1 

9 False 

True 

1 

10 a) 10#20#      or              b) 10#20#30#40#50# or 

c) 10#20#30#               

1 

11 a. Wireless transmission                                         or    d. unguided transmission 1 

 

12 c. global b                                                                    1 

13 

 

True 1 

14 b. distinct 1 

15 message 1 

16 c. tell() 1 

17 (A) 1 

18 (A) 1 

 SECTION B  

19 (i)  

eXtensible Markup Language, Simple Mail Transfer Protocol 

(ii) HTML( Hyper text mark Up language) • We use pre-defined tags • Static web 

development language – only focuses on how data looks • It use for only 

displaying data, cannot transport data • Not case sensistive XML (Extensible 

Markup Language) • we can define our own tags and use them • Dynamic web 

development language – as it is used for transporting and storing data • Case 
sensitive 

OR 

(i) Baud is the number bits carrying in one second. 

(ii) https (Hyper Text Transfer Protocol Secure) is the protocol that uses SSL (Secure 
Socket Layer) to encrypt data being transmitted over the Internet. Therefore, 
https helps in secure browsing while http does not. 

1+1=2 

20 The following Python code is supposed to print the largest word in a sentence but 

there are few errors. Rewrite the code after removing syntax and logical errors and 

underline each corrections made.  

Str=input("Enter a sentence") 

2 

SET-1 



word=Str.split() 

print(word) 

maxlen=0 

largest="" 

for i in word:  

         l=len(i) 

         if(l>maxlen): 

                  largest=i 

                  maxlen=l 

print(largest) 

21 def COUNTWORDS( ): 

 fin=open(‘PYTHON.TXT’, ‘r’) 

 count=0 

     for line in fin: 

          for i in line.split( ): 

              if i[0].isupper( ): 

                   count+=1 

     print(count) 

     fin.close( ) 

 

 

                                            OR 

 

def ALCount( ): 

    f = open('STORY.TXT' , 'r' )  

    countA = 0  

    countL = 0 

    for line in f: 

        if line[0] == 'A' or line[0] == 'a' : 

            countA+=1 

        if line[0] == 'L' or line[0] == 'l' : 

            countL+=1                

    print('A or a : ', countA)  

    print('L or l : ', countL)  

    f.close() 

 

(  ½ mark for correctly opening and closing the file 

   ½ for correct loop 

   ½ for correct if statement 

 ½ for correctly incrementing count 

) 

 

Note: Any other relevant and correct code may be marked 

 

2 

22 [11, 10, 9, 8, 7, 4] 2 

23 Write the Python statement for each of the following tasks using BUILT-IN 

functions/methods only: 

(i) L1.insert(3,400) 

(ii) message.endswith('.')  

OR 
import statistics  
print( statistics.mode(employeesalary) ) 

2 

24 Alter table customer add custid integer primary key;  



Insert into customer values(‘Nandini’,’Management’,45600,555); 

OR 

Alter table dance drop category; 

Alter table dance add typecca varchar(10) not null; 

25 300 @ 200 

300 # 100 

150 @ 100 

300 @ 150 

 

 SECTION C  

26 us@2023 

4 

3 

27 (i)  

Sum(Loan_Amount) 

1200000 

(ii) 

Max(Interest) 

4500 

(iii) 

Count(*) 

2 
 

1*3=3 

28 def countH(): 

    f=open(‘Para.txt’,’r’) 

    rec=f.readlines() 

    count=0 

    for line in rec: 

        if line[0]==’H’: 

            count+=1 

    print(‘The line count =’,=count) 

    f.close() 

(  ½ mark for correctly opening and closing the file 

   ½ for correct loop 

             1 for correct condition  

   ½ for correct if statement 

 ½ for correctly incrementing count 

) 

 

Note: Any other relevant and correct code may be marked 

 

                                                     OR 

def countmy(): 

    f=open(‘DATA.TXT’,’r’) 

    rec=f.read() 

    words=rec.split() 

    for w in words: 

        if w==’my’: 

            count+=1 

    print(‘my occurs’,count,’times’) 

    f.close() 

(  ½ mark for correctly opening and closing the file 

   ½ for correct loop 

             1 for correct condition 

   ½ for correct if statement 

 ½ for correctly incrementing count 

3 



) 

 

Note: Any other relevant and correct code may be marked 

 

29 Consider the table ACTIVITY given below: 

ACODE ACTIVITYN

AME 

PARTICIPANTS 

NUM 

PRIZEMONE

Y 

SCHEDULED

ATE 

1001 Relay Name 16 10000 23-Jan-2004 

1002 High Jump 10 12000 12-Dec-2003 

1003 Shot Put 12 8000 14-Feb-2004 

1005 Long Jump 12 9000 01-Jan-2004 

1008 Discuss 

Throw 

10 15000 19-Mar-2004 

Based on the given table, write SQL queries for the following: 

(i) Select * from activity where prizemoney >=9000; 

(ii) Update activity set prizemoney=prizemoney*1.05 where scheduledate 

>’01-Mar-2004’;  

(iii) Delete from activity where participantsnum<12; 

3 

30 Rajiv has created a dictionary containing employee names and their salaries as key 

value pairs of 6 employees. 

Write a program, with separate user defined functions to perform the following 

operations: 

● Push the keys (employee name) of the dictionary into a stack, where the 

corresponding value (salary) is less than 85000. 

● Pop and display the content of the stack. 

For example: 

If the sample content of the dictionary is as follows: 

 

Emp={"Ajay":76000, "Jyothi":150000, "David":89000, "Remya":65000, 

"Karthika":90000, "Vijay":82000} 

 

The output from the program should be: 

Vijay Remya Ajay 

Emp={"Ajay":76000, "Jyothi":150000, "David":89000, "Remya":65000, 

"Karthika":90000, "Vijay":82000} 

Stack=[] 

def Push(): 

    for ename in Emp: 

        if Emp[ename]<85000: 

            Stack.append(ename) 

def Pop(): 

    if Stack==[]: 

        print(“Stack Empty”) 

    else: 

       top = len(Stack) – 1 

       for a in range (top -1, -1,-1): 

            print(Stack[a],end=” ”) 

 

3 

 SECTION D  

31  

i. Select distinct Qty from garment; 

ii. Select sum(Qty) from garment group by CCode having count(*)>1; 

1*4=4 



iii. Select GNAME, CNAME, RATE from garment g, cloth c where 

g.ccode=c.ccode and Qty>100; 

iv. Select avg(Rate) from garment where rate between 1000 and 2000; 

 

 

32 def Insert(): 

    L=[] 

    while True: 

        ClockID = input("Enter Clock ID = ") 

        ClockName = input("Enter Clock Name = ") 

        YearofManf = int(input("Enter Year of Manufacture = ")) 

        price = float(input("Enter Price = ")) 

        R = [ClockID, ClockName, YearofManf, price] 

        L.append(R) 

        ans = input("Do you want to enter more records (Y/N)=") 

        if ans.upper()=='N': 

            break 

    import csv 

    fout = open('watch.csv','a',newline='') 

    W = csv.writer(fout) 

    W.writerows(L) 

    fout.close() 

    print("Records successfully saved") 

def Delete(): 

    ClockID = input("Enter Clock ID to be removed = ") 

    found = False 

    import csv 

    fin = open('watch.csv','r') 

    R = csv.reader(fin) 

    L = list(R) 

    fin.close() 

    for i in L: 

        if i[0] == ClockID: 

            found=True 

            print("Record to be removed is:") 

            print(i) 

            L.remove(i) 

            break 

    if found==False: 

        print("Record not found") 

    else: 

        fout = open('watch.csv','w',newline='') 

        W = csv.writer(fout) 

        W.writerows(L) 

        fout.close() 

        print("Record Successfully Removed") 

 

Insert() function 

½ mark for correct data input and making list 

½ mark for correctly opening file 

  1  mark for correctly writing record 

Delete() function 

½ mark for correctly copying data in list 

4 



½ mark for correctly identifying record and removing it from the list 

½ mark for correctly showing not found message 

½ mark for correctly re-writing remaining records 

 

 SECTION E  

33 a. The most suitable building to house the server is ADMIN building because it has 
maximum number of computers and as per 80:20 rule this building will have the 
maximum amount of network traffic. 
½ mark for correct answer 
½ mark for correct justification 

b.  
1 mark for correct diagram 

c. iii. Video Conferencing 
1 mark for correct diagram 

d.  
i. Switch/Hub will be placed in every building to provide network connectivity 

to all devices inside the building. 
ii. Repeater will not be required as there is not cable running for more than 

100 meters. 
½ mark each for each correct reason 

e. The device/software that can be installed for data security and to protect 
unauthorized access is Firewall. 

1 mark for correct answer 

1*5=5 

34 (i) r+ mode: • Primary function is reading • File pointer is at beginning of file • 

if the file does not exist, it results in an error w+ mode: • primary function is 

writing • if the file does not exist, it creates a new file. • If the file exists, 

previous data is overwritten • File pointer is at the beginning of file. ( minimum 
two differences should be given) 

(ii)  

def copyData(): 

    fobj=open(“STUDENT.DAT”,”rb”) 

    fobj1=open(“HIGHACHIEVERS.DAT”,”wb”) 

    cnt=0 

    try: 

        while True: 

            data=pickle.load(fob) 

           print(data) 

           if data[2]>60: 

               pickle.dump(data,fobj1) 

               cnt+=1 

     except: 

         fobj.close() 

2+3=5 



         fobj1.close() 

     return cnt 
(½ mark for correctly opening and closing files ½ mark for correct try and except block ½ mark 
for correct loop 1 mark for correctly copying data 2+3=5  
OR  

(i) Text files: • Extension is .txt • Data is stored in ASCII format that is human readable • Has 

EOL character that terminates each line of data stored in the text files Binary Files • Extension 

is .dat • Data is stored in binary form (0s and 1s), that is not human readable.  
(ii)  
def findType(atype): 
    fobj=open(“BANK.DAT”, “rb”) 
    try: 
        while True: 
            data=pickle.load(fobj) 
            if data[2]==atype: 
                print(“Account Number”, data[0]) 
                print(“Customer Name”, data[1]) 
                print(“Account Type”, data[2]) 
    except: 
        fobj.close() 
 ½ mark for correct return statement ½ mark for correctly opening and closing files ½ mark for 
correct try and except block ½ mark for correct loop ½ mark for correct if statement 1 mark for 
correctly displaying data 

 

35 (i) Foreign Key is a non key attribute for which values are derived from the 

primary key of another table. ( ½  marks for definition and ½ for any suitable 

example) 

(ii) import mysql.connector 

mycon=mysql.connector.connect(host=’localhost’,user=’root’, 

passwd=’KVS@123’,databse=’KV’) 

mycur=mycon.cursor() 

fn=input(“Enter flight number”) 

s=input(“Enter source’) 

d=input(“Enter Destination”) 

f=int(input(“Enter fare of flight”)) 

query=”insert into flight values(‘{}’,’{}’, ‘{}’,{}).format(fn,s,d,f) 

mycur.execute(query) 

mycon.commit() 

print(“Data added successfully”) 

mycon.close() 
½ mark for importing correct module 1 mark for correct connect() ½ mark for correctly 
accepting the input 1 ½ mark for correctly executing the query ½ mark for correctly using 
commit() ) 
Note: Any other correct logic may be marked 

OR 

(i) Primary key is one or more attribute that can uniquely identify the tuple 

in relation. Alternate key is a candidate key which is not selected as a 

primary key. Only one primary key exist in the a relation. Alternate keys 

may be more than one. ( ½ Marks for each point of difference). 

(ii) import mysql.connector 

mycon=mysql.connector.connect(host=’localhost’,user=’root’, 

passwd=’KVS@123’,databse=’Sports’) 

mycur=mycon.cursor() 

1+4=5 



query=”select * from game where No_of_Participants>{}”.format(10) 

mycur.execute(query) 

data=mycur.fetchall() 

for rec in data: 

    print(rec) 

mycon.close() 
(½ mark for importing correct module 1 mark for correct connect() 1 mark for correctly 
executing the query ½ mark for correctly using fetchall() 1 mark for correctly [15] displaying 
data) 

 

 

 


