
PM SHRI KENDRIYA VIDYALAYA

 BERHAMPUR

COMPUTER SCIENCE PROJECT

 2023-2024

 PROJECT TOPIC :
 STUDENT MANAGEMENT SYSTEM

SUBMITTED BY :

NAME: ANKITA BEHERA

CLASS: XII A

CBSE ROLL NUMBER:

SUBMITTED TO:

SAROJ KANTA MISRA PGT,CS

 CERTIFICATE
This is to certify that ANKITA BEHERA of class: XII A of PM SHREE

KENDRIYA VIDYALAYA BERHAMPUR has done her Project on

STUDENT MANAGEMENT SYSTEM under my supervision. She has

Taken interest and has shown at most Sincerity in completion of this

project.

I certify this project up to my expectation & as per guidelines issued by

CBSE, NEW DELHI.

Internal Examiner External Examiner

 Principal

 ACKNOWLEDGEMENT

It is with pleasure that I acknowledge my Sincere

gratitude to our teacher, MR. SAROJ KANTA

MISRA who taught and Undertook the

responsibility of teaching The subject computer

science. I have Been greatly benefited from his

classes.

I am especially indebted to our Principal MR.

SHIVA PRIYA DASH who has always been A

source of encouragement and support And

without whose inspiration this project Would not

have been a successful I would Like to place on

record heartfelt thanks to Him.

Finally, I would like to express my Sincere

appreciation for all the other Students for my

batch their friendship & the fine time that we all

shared Together.

 CONTENTS

 S.No. TOPIC PAGE NO

 1

 Certificate 2

 2 Acknowledgement 3

 3 Hardware’s and
Software’s required

 4

 4 Introduction 6

 5 Python source code 13

 6 MySQL Database 29

 7 Outputs 33

 8 References 39

 INTRODUCTION
The real meaning of educational administration has undergone a

radical transformation in recent years, with an increasing reliance

on technology to streamline student management processes. The

provided Python script embodies a Student Management System

that leverages the capabilities of MySQL as the backend database.

This system caters to the diverse needs of administrators and users,

offering functionalities ranging from student details search to

updates, views, additions, and deletions.

Evolution of Student Management Systems

Traditionally, student management involved intricate

manual processes, making it susceptible to errors, delays,

and inefficiencies. The emergence of digital solutions has

ushered in an era of efficiency and accuracy, allowing

educational institutions to manage student data seamlessly.

Our project aligns with this evolution, providing an

interactive and dynamic Student Management System that

caters to the specific requirements of administrators and

users alike.

Objectives of the Project

1.Administrative Empowerment

The primary objective of the Student Management

System is to empower administrators with tools that

facilitate efficient student data management. The

system encompasses key administrative

functionalities, including:

Student Search

The `search_student()` function allows administrators

to search for student details based on the student’s

name. This ensures quick access to comprehensive

information, such as admission number, name,

gender, class, section, phone number, email ID, and

stream.

Update Student Details

The `update_details()` function provides

administrators with a versatile interface to update

various student details, such as name, gender, class,

section, phone number, email ID, and stream. The

system’s flexibility ensures adaptability to changing

student information.

View Student Details

The `view_Marks()` function facilitates the display of

student details, with a particular focus on showcasing

student marks. This functionality caters to the

academic aspect of student management, allowing

administrators to assess and communicate student

performance.

###Add Student

The `add_student()` function streamlines the process

of adding new students to the system, ensuring that

vital details are captured efficiently. This contributes

to the completeness and accuracy of the student

database.

Delete Student

The `delete_student()` function enables

administrators to remove student records from the

system, providing a mechanism for data cleanup and

management.

2. User-Friendly Interface

The project recognizes the importance of user

experience for both administrators and end-users.

Two distinct panels, namely the Admin Panel and the

User Panel, cater to the unique needs of these user

groups.

Admin Panel

The `admin()` function serves as the gateway to the

Admin Panel, offering a menu-driven interface for

administrators to access and utilize the various

functionalities provided by the system.

User Panel

The `user()` function represents the User Panel,

providing a simplified interface for end-users to

search for their details, view academic information,

and exit the system.

Key Code Functionalities Integrated

Search and Display Operations

Search Student

The `search_student()` function utilizes SQL queries to

search for student details based on the provided

name, returning a detailed display of relevant

information.

View Student Details

The `view_Marks()` function employs SQL queries to

fetch and display student details, with a specific focus

on academic performance.

Update Operations

Update Student Details

The `update_details()` function integrates user input

and SQL queries to selectively update student

information, offering granular control over the data

modification process.

Data Manipulation Operations

Add Student

The `add_student()` function combines user input and

SQL queries to insert new student records into the

system, ensuring data completeness.

Delete Student

The `delete_student()` function utilizes SQL queries to

delete student records based on the provided name,

contributing to data management and cleanup.

User and Admin Panels

Admin Panel

The `admin()` function orchestrates the Admin Panel,

providing administrators with a menu-driven interface

to navigate through the system’s functionalities.

User Panel

The `user()` function represents the User Panel,

offering end-users a simplified menu to search for

their details, view academic information, and exit the

system.

Integration of MySQL and Python

MySQL – The Relational Database Management

System

MySQL serves as the backend database for the

Student Management System, storing and managing

student-related information. The structured schema

ensures efficient storage, retrieval, and manipulation

of data.

Python – The Programming Language

Python, with its versatility and readability, powers the

logic and user interface of the Student Management

System. The script employs Python’s database

connectivity features to seamlessly integrate with

MySQL, providing a cohesive and interactive

experience for users and administrators.

Significance of the Project

The significance of our Student Management System

transcends its technical intricacies. In an era where

educational institutions are grappling with vast

amounts of student data, a robust and user-friendly

system is indispensable. Our project addresses this

need, offering a solution that not only streamlines

administrative tasks but also enhances user

experience and contributes to the overall efficiency of

student management processes.

In the subsequent sections of this project report, we

will delve into the detailed functionalities of the

system, explore the database schema, discuss the

integration of Python and MySQL, and shed light on

the future enhancements and scalability of the

Student Management System. Through this

comprehensive exploration, we aim to showcase not

only the technical prowess of the implemented

solution but also the thoughtfulness invested in

creating a system that aligns seamlessly with the

evolving landscape of educational administration.

 Python Source Code

Import mysql.connector as con

Print(“---

“)

 #To search students from student

details

 #table.

Def search_student():

 Print(“*****************STUDENT

DETAILS***********************”)

 K=input(“Enter name to search student Name : “)

D=con.connect(host=”localhost”,user=”root”,passwor

d=”admin”,database=”STUDENT_MANAGEMENT_SYST

EM”)

 C=d.cursor()

 c.execute(“select*from STUDENT_DETAILS where

NAME like ‘%{}%’”.format(k))

 a=c.fetchall()

 if len(a)>=1:

 for i in a:

 print(“Addmission no:”,i[0])

 print(“Name is:”,i[1])

 print(“Sex:”,i[2])

 print(“Class=”,i[3])

 print(“Sec:”,i[4])

 print(“Phone number is=”,i[5])

 print(“Email_id:”,i[6])

 print(“Stream is:”,i[7])

 print(“--“)

 else:

 print(“Student Details Not Found”)

 d.commit()

 #To update details of students from

student details table.

Def update_details():

D=con.connect(host=”localhost”,user=”root”,passwor

d=”admin”,database=”STUDENT_MANAGEMENT_SYST

EM”)

 C=d.cursor()

 Print(“1. Update Name”)

 Print(“2. Update Gender”)

 Print(“3. Update class”)

 Print(“4. Update Section”)

 Print(“5. Update Phone no.”)

 Print(“6. Update E-mail id”)

 Print(“7. Update Stream”)

 Opt=int(input(“Enter your choice to update”))

 If opt==1:

 Print(“---“)

 Print(“You are inside updating name.”)

 Q=input(“Enter ADDMISSION_NUMBER whose

data you want to update: “)

 L=input(“Enter your updated name: “)

 c.execute(“update STUDENT_DETAILS set

NAME=’{}’ where

ADDMISSION_NUMBER={}”.format(l,q))

 d.commit()

 elif opt==2:

 print(“---“)

 print(“You are inside updating Gender.”)

 p=input(“Enter name whose data you want to

update: “)

 l=input(“Enter your updated Gender: “)

 c.execute(“update STUDENT_DETAILS set SEX=’{}’

where name=’{}’”.format(l,p))

 d.commit()

 elif opt==3:

 print(“---“)

 print(“You are inside updating class.”)

 m=input(“Enter name whose data you want to

update: “)

 n=input(“Enter your updated class: “)

 c.execute(“update STUDENT_DETAILS set

CLASS={} where name=’{}’”.format(n,m))

 d.commit()

 elif opt==4:

 print(“---“)

 print(“You are inside updating section.”)

 y=input(“Enter name whose data you want to

update: “)

 e=input(“Enter your updated section: “)

 c.execute(“update STUDENT_DETAILS set SEC=’{}’

where name=’{}’”.format(e,y))

 d.commit()

 elif opt==5:

 print(“---“)

 print(“You are inside updating phonenumber.”)

 h=input(“Enter name whose data you want to

update: “)

 r=input(“Enter your updated phonenumber: “)

 c.execute(“update STUDENT_DETAILS set

PHONE_NUMBER={} where name=’{}’”.format(r,h))

 d.commit()

 elif opt==6:

 print(“---“)

 print(“You are inside updating email_id.”)

 j=input(“Enter name whose data you want to

update: “)

 k=input(“Enter your updated email_id : “)

 c.execute(“update STUDENT_DETAILS set

EMAIL_ID=’{}’ where name=’{}’”.format(k,j))

 d.commit()

 elif opt==7:

 print(“---“)

 print(“You are inside updating stream.”)

 f=input(“Enter name whose data you want to

update: “)

 z=input(“Enter your updated stream : “)

 c.execute(“update STUDENT_DETAILS set

STREAM=’{}’ where NAME=’{}’”.format(z,f))

 d.commit()

 else:

 update_details()

 #To display the marks of students from

student details table .

Def view_Marks():

 Print(“******************* VIEW STUDENT

DETAILS******************”)

 K=input(“Enter name to view student details : “)

D=con.connect(host=”localhost”,user=”root”,passwor

d=”admin”,database=”student_management_system”

)

 C=d.cursor()

 c.execute(“select*from STUDENT_DETAILS where

NAME like ‘%{}%’”.format(k))

 s=c.fetchall()

 for i in s:

 print(“MARKS:”,i[8])

 print(“---“)

 d.commit()

 #To insert details to student details table

Def add_student():

 Print(“.................. ADD STUDENT

DETAILS......................”)

 N=input(“Enter student name : “)

 A=int(input(“Enter student admission number: “))

 R=input(“Enter gender of student: “)

 I=int(input(“Enter class of student:”))

 P=input(“Enter student section : “)

 T=int(input(“Enter student phone number:”))

 W=input(“Enter student stream: “)

 U=input(“Enter your mail id:”)

 M=int(input(“Enter your marks:”))

D=con.connect(host=”localhost”,user=”root”,passwor

d=”admin”,database=”STUDENT_MANAGEMENT_SYST

EM”)

 C=d.cursor()

 Sq=”insert into STUDENT_DETAILS

values({},’{}’,’{}’,{},’{}’,{},’{}’,’{}’,{})”.format(a,n,r,i,p,t,u,

w,m)

 c.execute(sq)

 d.commit()

 print(“student data added successfully”)

 #To delete items from student details table

Def delete_student():

 Print(“******************** DELETE STUDENT

DETAILS*******************”)

 K=input(“Enter name to DELETE student details : “)

D=con.connect(host=”localhost”,user=”root”,passwor

d=”admin”,database=”STUDENT_MANAGEMENT_SYST

EM”)

 C=d.cursor()

 c.execute(“delete from STUDENT_DETAILS where

name=’{}’”.format(k))

 print(“.........Data deleted successfully..........”)

 d.commit()

def admin():

 while True:

 print(“***************WELCOME TO STUDENT

MANAGEMENT *****************”)

 print(“--

----“)

 print(“1.search student details”)

 print(“2.update student details”)

 print(“3.view student details”)

 print(“4.add student details”)

 print(“5.delete student details”)

 print(“6.exit”)

 ch=int(input(“your choice: “))

 if ch==1:

 search_student()

 elif ch==2:

 update_details()

 elif ch==3:

 view_Marks()

 elif ch==4:

 add_student()

 elif ch==5:

 delete_student()

 elif ch==6:

 break

 else :

 print(“invalid input”)

def user():

 while True:

 print(“***************WELCOME TO STUDENT

MANAGEMENT **************”)

 print(“1.search your Details”)

 print(“2.view Details”)

 print(“3.exit”)

 ch=int(input(“what is your choice: “))

 if ch==1:

 search()

 elif ch==2:

 view_Marks()

 elif ch==3:

 break

 else:

 print(“invalid input”)

 #To search students from student details

table.

Def search():

 Print(“*****************STUDENT

DETAILS***********************”)

 K=input(“Enter name to search student details: “)

D=con.connect(host=”localhost”,user=”root”,passwor

d=”admin”,database=”STUDENT_MANAGEMENT_SYST

EM”)

 C=d.cursor()

 c.execute(“select*from STUDENT_DETAILS where

NAME like ‘%{}%’”.format(k))

 a=c.fetchall()

 if len(a)>=1:

 for i in a:

 print(“Addmission no:”,i[0])

 print(“Name is:”,i[1])

 print(“Sex:”,i[2])

 print(“Class=”,i[3])

 print(“Sec:”,i[4])

 print(“Phone number is=”,i[5])

 print(“Email_id:”,i[6])

 print(“Stream is:”,i[7])

 print(“--“)

 else:

 print(“Student Details Not Found”)

 d.commit()

 #To display the marks of students from

student details table .

Def view_Marks():

 Print(“******************* VIEW STUDENT

DETAILS******************”)

 K=input(“Enter name to view student details : “)

D=con.connect(host=”localhost”,user=”root”,passwor

d=”admin”,database=”student_management_system”

)

 C=d.cursor()

 c.execute(“select*from STUDENT_DETAILS where

NAME like ‘%{}%’”.format(k))

 s=c.fetchall()

 for i in s:

 print(“MARKS:”,i[8])

 print(“---“)

 d.commit()

while True:

 print(“**************WELCOME TO STUDENT

MANAGEMENT*****************”)

 print(“1.admin”)

 print(“2.user”)

 print(“3.exit”)

 ch=int(input(“login through: “))

 if ch==1:

 admin()

 elif ch==2:

 user()

 elif ch==3:

 break

 else:

 print(“invalid input”)

 MySQL DATABASES

STUDENT MANAGEMENT SYSTEM DATABASE AND

STUDENT DETAILS TABLE:-

ADD STUDENT FROM STUDENT _DETAILS TABLE:

#Added a new student in student details table named

PRITI SHARMA

Updated Student Class From STUDENT_DETAILS Table:

#updated the class of student name SALONI from class

12 to class 11.

Updated Student Stream From STUDENT_DETAILS

Table:

 #updated the Stream of student name SALONI from

SCIENCE to ARTS.

DELETE STUDENT FROM STUDENT _DETAILS TABLE:

#Deleted the Details of student name PRITI SHARMA

from STUDENT_ DETAILS TABLE.

 OUTPUTS

#User Panel and Admin Panel:

#search Student Details:

#Update student Details:

##Name:

##Gender:

##Class:

##Section:

##Stream:

#View Mark of student :

#Add student Details:

#Delete Student Details:

 THANK YOU

